OpenAI chat model integration.

Setup: Install @langchain/openai and set environment variable OPENAI_API_KEY.

npm install @langchain/openai
export OPENAI_API_KEY="your-api-key"

Name of OpenAI model to use.

Sampling temperature.

Max number of tokens to generate.

Whether to return logprobs.

Configure streaming outputs, like whether to return token usage when streaming ({ include_usage: true }).

Timeout for requests.

Max number of retries.

OpenAI API key. If not passed in will be read from env var OPENAI_API_KEY.

Base URL for API requests. Only specify if using a proxy or service emulator.

OpenAI organization ID. If not passed in will be read from env var OPENAI_ORG_ID.

Tools to bind to the model.

Specify how and/or which tool the model should invoke.

The format the model should respond in.

Seed for reproducibility.

Additional options to pass to streamed completions. If provided takes precedence over "streamUsage" set at initialization time.

Whether or not to include token usage in the stream. If set to true, this will include an additional chunk at the end of the stream with the token usage.

Whether or not to restrict the ability to call multiple tools in one response.

Whether or not to force the model to return structured output which exactly matches the schema.

See full list of supported init args and their descriptions in the params section.

import { ChatOpenAI } from '@langchain/openai';

const llm = new ChatOpenAI({
model: "gpt-4o",
temperature: 0,
maxTokens: undefined,
timeout: undefined,
maxRetries: 2,
// apiKey: "...",
// baseUrl: "...",
// organization: "...",
// other params...
});
const messages = [
{
type: "system" as const,
content: "You are a helpful translator. Translate the user sentence to French.",
},
{
type: "human" as const,
content: "I love programming.",
},
];
const result = await llm.invoke(messages);
console.log(result);
for await (const chunk of await llm.stream(messages)) {
console.log(chunk);
}
import { AIMessageChunk } from '@langchain/core/messages';
import { concat } from '@langchain/core/utils/stream';

const stream = await llm.stream(messages);
let full: AIMessageChunk | undefined;
for await (const chunk of stream) {
full = !full ? chunk : concat(full, chunk);
}
console.log(full);
import { z } from 'zod';

const GetWeather = {
name: "GetWeather",
description: "Get the current weather in a given location",
schema: z.object({
location: z.string().describe("The city and state, e.g. San Francisco, CA")
}),
}

const GetPopulation = {
name: "GetPopulation",
description: "Get the current population in a given location",
schema: z.object({
location: z.string().describe("The city and state, e.g. San Francisco, CA")
}),
}

const llmWithTools = llm.bindTools(
[GetWeather, GetPopulation],
{
// strict: true // enforce tool args schema is respected
}
);
const aiMsg = await llmWithTools.invoke(
"Which city is hotter today and which is bigger: LA or NY?"
);
console.log(aiMsg.tool_calls);
import { z } from 'zod';

const Joke = z.object({
setup: z.string().describe("The setup of the joke"),
punchline: z.string().describe("The punchline to the joke"),
rating: z.number().optional().describe("How funny the joke is, from 1 to 10")
}).describe('Joke to tell user.');

const structuredLlm = llm.withStructuredOutput(Joke);
const jokeResult = await structuredLlm.invoke("Tell me a joke about cats");
console.log(jokeResult);
const jsonLlm = llm.bind({ response_format: { type: "json_object" } });
const jsonLlmAiMsg = await jsonLlm.invoke(
"Return a JSON object with key 'randomInts' and a value of 10 random ints in [0-99]"
);
console.log(jsonLlmAiMsg.content);
import { HumanMessage } from '@langchain/core/messages';

const imageUrl = "https://example.com/image.jpg";
const imageData = await fetch(imageUrl).then(res => res.arrayBuffer());
const base64Image = Buffer.from(imageData).toString('base64');

const message = new HumanMessage({
content: [
{ type: "text", text: "describe the weather in this image" },
{
type: "image_url",
image_url: { url: `data:image/jpeg;base64,${base64Image}` },
},
]
});

const imageDescriptionAiMsg = await llm.invoke([message]);
console.log(imageDescriptionAiMsg.content);
const aiMsgForMetadata = await llm.invoke(messages);
console.log(aiMsgForMetadata.usage_metadata);
const streamForMetadata = await llm.stream(
messages,
{
stream_options: {
include_usage: true
}
}
);
let fullForMetadata: AIMessageChunk | undefined;
for await (const chunk of streamForMetadata) {
fullForMetadata = !fullForMetadata ? chunk : concat(fullForMetadata, chunk);
}
console.log(fullForMetadata?.usage_metadata);
const logprobsLlm = new ChatOpenAI({ logprobs: true });
const aiMsgForLogprobs = await logprobsLlm.invoke(messages);
console.log(aiMsgForLogprobs.response_metadata.logprobs);
const aiMsgForResponseMetadata = await llm.invoke(messages);
console.log(aiMsgForResponseMetadata.response_metadata);

Hierarchy (view full)

Constructors

Properties

frequencyPenalty: number = 0

Penalizes repeated tokens according to frequency

model: string = "gpt-3.5-turbo"

Model name to use

modelName: string = "gpt-3.5-turbo"

Model name to use Alias for model

n: number = 1

Number of completions to generate for each prompt

presencePenalty: number = 0

Penalizes repeated tokens

streamUsage: boolean = true

Whether or not to include token usage data in streamed chunks.

true
streaming: boolean = false

Whether to stream the results or not. Enabling disables tokenUsage reporting

temperature: number = 1

Sampling temperature to use

topP: number = 1

Total probability mass of tokens to consider at each step

apiKey?: string

API key to use when making requests to OpenAI. Defaults to the value of OPENAI_API_KEY environment variable.

azureADTokenProvider?: (() => Promise<string>)

A function that returns an access token for Microsoft Entra (formerly known as Azure Active Directory), which will be invoked on every request.

azureOpenAIApiDeploymentName?: string

Azure OpenAI API deployment name to use for completions when making requests to Azure OpenAI. This is the name of the deployment you created in the Azure portal. e.g. "my-openai-deployment" this will be used in the endpoint URL: https://{InstanceName}.openai.azure.com/openai/deployments/my-openai-deployment/

azureOpenAIApiInstanceName?: string

Azure OpenAI API instance name to use when making requests to Azure OpenAI. this is the name of the instance you created in the Azure portal. e.g. "my-openai-instance" this will be used in the endpoint URL: https://my-openai-instance.openai.azure.com/openai/deployments/{DeploymentName}/

azureOpenAIApiKey?: string

API key to use when making requests to Azure OpenAI.

azureOpenAIApiVersion?: string

API version to use when making requests to Azure OpenAI.

azureOpenAIBasePath?: string

Custom endpoint for Azure OpenAI API. This is useful in case you have a deployment in another region. e.g. setting this value to "https://westeurope.api.cognitive.microsoft.com/openai/deployments" will be result in the endpoint URL: https://westeurope.api.cognitive.microsoft.com/openai/deployments/{DeploymentName}/

logitBias?: Record<string, number>

Dictionary used to adjust the probability of specific tokens being generated

logprobs?: boolean

Whether to return log probabilities of the output tokens or not. If true, returns the log probabilities of each output token returned in the content of message.

maxTokens?: number

Maximum number of tokens to generate in the completion. -1 returns as many tokens as possible given the prompt and the model's maximum context size.

modelKwargs?: Record<string, any>

Holds any additional parameters that are valid to pass to openai.createCompletion that are not explicitly specified on this class.

openAIApiKey?: string

API key to use when making requests to OpenAI. Defaults to the value of OPENAI_API_KEY environment variable. Alias for apiKey

organization?: string
stop?: string[]

List of stop words to use when generating Alias for stopSequences

stopSequences?: string[]

List of stop words to use when generating

supportsStrictToolCalling?: boolean

Whether the model supports the strict argument when passing in tools. If undefined the strict argument will not be passed to OpenAI.

timeout?: number

Timeout to use when making requests to OpenAI.

topLogprobs?: number

An integer between 0 and 5 specifying the number of most likely tokens to return at each token position, each with an associated log probability. logprobs must be set to true if this parameter is used.

user?: string

Unique string identifier representing your end-user, which can help OpenAI to monitor and detect abuse.

client: OpenAIClient
clientConfig: ClientOptions

Accessors

Methods